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INTRODUCTION A

It must be with some trepidation that one ventures to speak about the
problems of linear estimation to an audience already well familiar with the
overwhelmingly more difficult nonlinear filtering problermn. However, perhaps to
compensate for this spectacle, the organizers have given me the opportunity to
speak first, with considerable latitude in the choice of my topics.

For such an audience, there will be no need to present a tutorial on linear
filtering, especially of the Kalman-Bucy type. 1 chose, therefore, to focus on
some aspects generally less familiar to those with a ‘'modern’ control theory
background, i.e., largely a state-space background. In particular, we shall begin
with a discussion of integral equations and of the important Wiener-Hopt tech-
nique. We shall specialize this to stationary processes over infinite intervals, and
then describe some alternative, often computationally better, solution methods
of Ambartzumian-Chandrasekhar and Krein-Levinson for finite-interval prob-

>—e lems. For nonstationary processes, we start first with state-space models and

D

‘—5 build up to a brief description of the scattering theory framework for linear esti-
S

- mation. This will then lead us to nonstationary versions of the Ambartzumian-
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Chandrasekhar and Krein-Levinson equations, which we shall only consider very
briefly, providing detailed references for further reading. We shall conclude with

a remark on a possible implication for nonlinear filtering.

Our presentation is confined to continuous-time processes; a recent survey

of the discrete-time case can be found in Kailath (1980).

In writing this chapter, it was a great help to have a carefully prepared prel-
iminary reduction of the actual lectures, contributed by B. Hanzon, B. Ursin and
D. Ocone. It is a pleasure also to thank M. Hazewinkel for these and several

other organizational touches that made for an outstanding symposium.
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1. The Integral Fquations of Smoothing and Filtering

Our estimation problems will be discussed in the context of the following

model for the observed random process {y;}:

Yve=2z+v ,0st<T (1)
where z; and vy are RP-valued stochas'ic variables with mean zero, and such
that '

E vy =l6(E~-s) |
where 6 is the Dirac-delta distribution, and
E{zyzy + zyu, +1,2,) := K(t.s) |
a continuous function on [0,7]x[0.7]. This mode! describes a situation in which
a signal, z;, can only be observed with additive white noise v;. We note that
K(t.s) does not have to be a covariance function; it is necessary only that
R(t.s):= Eyyys = I, 6(t —s) + K(t,s)

be a covariance function.

It will be useful to consider two special cases:

(i) vtz for all s,t with 0<s<T, 0st<T. In this case K(t.s)=F 2z, is a

covariance function

(i) v Lz, for all ¢>s. This possibility allows causal dependence of z on y

(feedback!).

1a. The Smoothing Problem: Fredholm Equations

The smoothing problem is as follows. Given the observations {y, : 0<s<T],

find

¥ No specia! notation will be used to indicate matrix on vector quantities. Primes will denote
transposes and £ denotes expectation.
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Zor= {H(t.s)y, ds (Ra)
such that E’(z,—f,”-)'(z, —5”1) is minimum, where the minimization is taken
over all matrix-valued functions H(t,s) of s, with ¢ fixed, in the Hilbert space

L?0,T]. 1t is well known that the following holds.

Theorem: A necessary and suflicient condition for the solution of this smoothing

problem is
E(zy —Z¢)r)ys =0 forall s&[0,T] . (2b)

Put differently: every component of 2; T |7 must be orthogonal to every com-
ponent ¥,. for all s ¢[0,T], where the orthogonality is induced by the inner
product (e .b):=F ab,a and b scalar stochastic variables.

Suppose now turther that the special case (i) holds, namely that z; is
orthogonal to v, for all s,f with Oss<T, Ost<T7. Then the condition (2b) leads
to the equation

T
H{t,s) + jo' h{t DK(Ts)dT= K(t,7).0<st=<T. (3)
This is a Fredholm equation of the second kind (see, e.g., Courant and Hilbert,
Vol. 1, Ch. 1lI) and the solution H(t,s) is called the Fredholm resolvent of
K(t.s) on [0,T]x[0,T]. Introduce the following operator notation:
HK is defined as (HK)(t,s) =_2 H(t,")K(rs)dr,
and 7 is the identity operator with kernel /(t,s) =/, 6(t —s). In this notation

the equation (3) can be written as

H+HK=K (42)

or in the equivalent forms
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U~ +K)=1=(+KW -H). (4b)

Clearly I-H isthe inverse, in the sense of the "operator multiplication” that we
have just defined, of i+K . Note that in this case of complete orthogonality of

2z, and v,, the smoothing filter is precisely the resolvent of K.

How can the resolvent be computed? One answer is provided by the so-
called Mercer expansion of K(t.s) (see, e.g., Riesz and Nagy, p. 245; we use an

extension Lo the vector case):
K(t.s) = 3 Nept)wils) (5a)
i=1

where the ¢; are vector-valued orthcunormal eigenfunctions of the operator K
with eigenvalue ¢;:
T

[ Kt Do (T dT=hgelt), i=1,2.. 0<t<T (5b)

Then it can be seen easily that the Fredholm resolvent of K can be written as

H(ts) =Y (M7 1+ N)eilt)pils) (6)

1
1b. The Filtering Problem: Wiener-Hopf Equations

In the special case that 7=t, the smoothing problem becomes what is
known as a filtering problem. We shall assume further that we are in one of the
special cases (i) and (ii), viz., that v; is either orthogonal to 2z, for all s.t or

just for all s<t. The filtered estimate can be written
R ¢
Z ¢ =_{h.(t,s)y,ds (7)

where h(t,s) satisfles

h(l,s)+}h(t,7’)l((‘r,s)d‘r= K(ts), O<s<t<T, (8}
()
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Note that for each fixed ¢, we have a smoothing problem. The point is now
that we have a collection of Fredholm integral equations, one for each value of
t. and unlike as in (3) is more than just an indexing parameter in the family of
equations. The filtering integral equation is said to be of “Wiener-Hopf type"
rather than of "Fredholm type" and the solution can not be as simply expressed

in terms of Mercer expansions as in the smoothing problem.

In one sense then, smoothing appears to be “easier” than filtering, a state-
ment counter to the intuition current in the Kalman-Bucy state-space theory
(see, e.g.. Meditch (1969) and also the discussion following (15b) below). How-

ever, the following facts give some justification to this claim:

1. In the Wiener theory of estimation of stationary processes over infinite
(smoothing) or semi-infinite (filtering) intervals, the smoothing solution is
readily determined by Fourier transformation, while the filtering solution
requires the more difficult Wiener-Hopf technique (further elaborated

below).

2. In estimation given a fixed time-interval, smoothing can be implemented
with time invariant filters (convolutions or fast Fourier transforms, see
Lgvy, Kailath, Ljung and Mort (1979)), while this will never be true for filter-

ing.

1c. The Generalized Wiener-Hopf Technique

Wiener-Hop! equations first appeared in astrophysics and radiative transfer
theory around 1900. In 1931, Wiener and Hopf invented an ingenious method for
solving the equation, and it has since borne their name. Their so-called Wiener-
Hopt technique plays a central role in linear flltering theory, and we will present
it briefly here, both as a framework for later discussion and as a service to our

state-space friends who migut conceivably have never seen it! The technique
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was originally developed for difference {or convolution) kernels R, here we
/:»scribe a generalized form (for arbitrary kernels) that captures the main idea.

To focus on the main idea, the treatment will leave aside technical issues
(hypotheses on kernel functions, specification of function spaces, etc.) that are
needed to build a rigorous theory (see, for example, Devinatz and Shinbrot
(1967) and Gohberg and Feldman {1974)). To describe the technique, we first
develop an operator notation for (8) that expresses the constraint s<t. Thus if

L is an integral operator associated with the kernel L(¢.s), define
Uief (8) = [HL(Es) S (s) ds
with

L(t, if <¢
U’(t's);'::[o(tS) s ot

Accordingly, define {/{,:=I/. {/}, is called the causal part of L. With this nota-

tion the Wiener-Hopf equation (B) becomes
thRy, = (K3, . (9)

As only the values of h{f,s) for s=<t play a role in this problem, h{t.s) canbe
(and will be) taken equal to its causal part: h={h{,. We assume that
R=I+K, R=R', R is positive definite as a kernel, and X does not contain /
term (alternatively: /, 6(t—s) does not appear in K(t,s)).

The key idea of the method of Wiener and Hopt (1931) is to assume that R

can be suitably factored. In our case, as
R= RYV2p*7? ,
where R'V? is a causai and causally invertible operator, that is, RY2={R"/3],

and R7V/2={RY?]! exists and satisfles R~V2={RV?, Here R*? denotes

the adjoint of RYV2 that is R”%t.s)=RV?¥s.t) Such an RV? is called the
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canonical factor of R, and when it exists it will be unique as a consequence of
the causal and causally invertible requirement. [Observe that, despite Lhe nota-
tion, R'2 is not the traditional operator-theoretic (symmetric) square root of

a positive operator.]

Now make the simple but crucial observat.on that if h solves (9). there

must exist some function g such that

{9+ =0 and hRR =K +g . (10)
Here g is strictly anti-causal, i.e., it does not have any / component. Multiply-
ing (10) on the right by R~*/2, we have

hRV?2= KR™*/2 + gR~"2 (11)
Now apply {1}, to both sides of (11). Since h is causal and R'Y? 1s causal and
since the composition of two causal operators is again causal, {hRY?},=hRV2
Likewise the composition of a strictly anti-causal operator (g) with an anti-
causal operator (R™"%) is strictly anti-causal, (R *2=(R1/?)* is anti-causal

since R™? s causal). Thus {gR~"?,=0. The end result is hRV2={KR */?|,,

or
h = (KR 3,72 (12)
This is the solution of the Wiener-Hopf equation.

However, we have not really so far used the assumption that R has the spe-
cial form R=/+K For this case further important results are available from

canonical factorization. First observe that, since K=R -/,

h={R-DR 3RV
= iRl/Z - R—‘/2"R71/2

=[—{R YRV (13)
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However, when R=/+K, R'? must have the form R'Y2=/+h, where h is some
strictly causal operator, and so also R"? must have the form R Y3=/+l,
where ! is strictly causal. Therefore, {R /3, ={/+!"},=[, since l® is strictly
anti-causal. Hence (13) reduces to

h=]-R V2 (14)
This striking formula has several interesting implications

First, and most important, it shows that for this problem canonical factori-
zation and filtering are equivalent problems; h is immediately determined if

RY?2 ;5 known and vice versa.

Secondly, if R '/? is applied as a filter to y, we have

RV =(I-hyy=y -2 .
Since y=z+u.z is the estimate of y; given {y,. s<t}, so that it is reasonable

to expect that {y, —ft{. the new information or innovation process, is a white

noise process, consistent with the calculation
SRV R-V%y> = R Vey y>R /%= R-VERR /2=
This result can be rigorously established under quite general conditions (see

Kailath (1968), Kailath (1971), Meyer (1972)).

1d A Resolvent Identity relating Smoothing and Filtering

Recall the Fredholm resolvent of K, defined by /-H=(/+K) '=R"!. By vir-

tue of (14), we can write
I -H=R?RV%=(] -h")I -h) (15a)
which immediately yields the nice formula
H=h'+h-h'h . (15b)

This is actually an old identity, known by the early 1950's when it was
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discovered, in a differential version, independently by Siegert, Krein, Bellman
and others (see references in Kailath (1974)).

Now when the signal and noise are completely uncorrelated, we saw earlier
(cf. (4b)) that the Fredholm resolvent H is just the smoothing filter; the iden-
tity (15) then shows that the causal filter h determines the smoothing filter.
This seems to contradict the remarks we made in Section 2b about the relative
difficulties of smoothing and filtering as they appeared from thinking of the
Wiener-Hopf equation as an infinite family of Fredholm equations. In the
approach via canonical factorization, it would appear that filtering comes first,
and then smoothing. In Sec. 3d, which describes a scattering theory approach,

this sequence will again be reversed.

We shall illustrate these different relationships between filtering and

smoothing by considering several specific examples in the next two sections.
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2. Some Fxamples - Stationary Processes

2a. Scalar Stationary Proceses Over Infinite Intervals

These problems were studied by Wiener, Kolmogorov and Krein For a con-
cise exposition of Wiener's work, see a paper by N. Levinson {1947), reprinted as
Appendix C of Wiener {1949). The papers of Kolmogorov and Krein are repri: led

in Kailath (1977)

We suppose y;.2;. v, lo be scalar and stationary, then R({t .s)=R(t-s)

We assume the existence of
Sy(@) = FIR(t)w) = [ R(t)e I+t dt

the Fourier transform of F({). where j is the imaginary unit. S {w) is nonne-
gative (for real ) and is known as the power spectral density of the process y

We assurre further that

f__lf_SLw)_ldw<m (16)

If this 1s not the case, then Kolmogorov and Wiener showed that y, can be

predicted perfectly from ils own past {see, e.g., Doob {1953), Ch. 12)

Under this assumption the canonical factorization of R(t) over (—w,x)

corresponds to a factorization of 5,(w) as
S,(w) = SH)S, (@), (17

where S.'(g+jw) is analytic and bounded in the right half plane >0, &, {«) 15

analytic in the left half plane and
S, (0 +jw) =80 -jw) {7 7a)

It can be shown thal {see, e.g., Solodovnikov {:960))
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S, (@) = V5, (w) /%) (18
where 3(w) is the Hilbert transtorm of In V5, ().

In the case that S, (w+ig) is rational, S, (w+i0) can be found as follows:

S} (w + jo) = constant x Monic polynomial of left half plane zeros) x  {19)
(Monic polynomial of all left half plane poles)™.

This follows immediately from the fact that S,(¢+jw) and 1/ 5/ (o+jw) must
be analytic in the upper half plane ¢>0, and from (17a). Note that (17a)

implies S,'(w)‘sg’;"?c)*):Sv“(—m)‘ because R(t) isreal Therefore,

Now the canonical causal factor (see the text between (9) and (10)) can be

found as
RVE = FS) ()3 . (20)

the inverse Fourier transform of S,/(w). The optimal filter (see (14)) is then

equal to

h=F ‘{1 — (21)

How About Smoothing?

Consider the Fourier transform of the smoothing filter H (see (15)):

Fi{H{=Fth +h° —h‘h{ = (=22)
R 1 [ P U | O U
h [’ Sy (@) ' v [l s.;vmi [ s,'(w)J[’ 5/ () ]
L 1 o
=t SJ(Q)SJ("U) SII(Q)

This 1s a well known formula easy to derive directly from the equality

H=I-R ' Note that smoothing does not requre special factorization, so that

the smoothing solution is casier to find {rom the given data than the filtering

solution.
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Important Remark: When S (w) is rational, S/(w) is rational and so is

1
S (@)

Fth} =1 - This can be readily implemented in (a variety of) state-

space forms, so that 2z can be "recursively computed”, as noted by Whittle
((1983), p. 35) and others, independently of the direct state-space formulation of

Kalman and Bucy (1961).

2b. Finite Intervals - The Ambartzumian-Chandrasekhar Equations

We shall next talk about the more difficult case of filtering stationary,
scalar processes defined on finite intervals. This may be considered the first
natural extension of Wiener's work and it began to be studied in the engineering
literature around 1950, shortly after Wiener's work became public (see. eg.,
Zadeh and Ragazzini {1950)) The finite interval case presented a new challenge
because spectral factorization, in its traditional sense, does not work, and thus
researchers tried various other methods to find the solution (see. e.g., Solodov-
nikov (1962)).

However, the astrophysicists V. A. Ambartzumian (USSR) and S Chan-
drasekhar (USA) had already studied such problems in the mud-1940's, indepen-
dently of engineers, and had demonstrated that the Wiener-Hopf equation could
be replaced by an equivalent Riccati equation. Their results greatly simplified
the numerical computation of solutions, and since computation in those days
meant calculation by hand, they were considered Lo be a great success The
Ambartzumian-Chandrasekhar theory (see Chandrasekhar {1950)) assumes that

the kernel of the Wiener-Hopf equation has of the form
1
K(t -s) =fe alt-2lyy(a) da | (27}
0

in which w(a) is some known function. This form arose from the physical situa-

tion they considered, in which light incident at an angle a is propagating
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through a medium. If we assume that the light is incident at a finite number of
values «, so that w(a) is a sum of d&-functions, the process y wll have a

rational spectral density

- 2wy o
S,(w)y =1 +§jl = (24)

The first result of the Ambartzumian-Chandrasekhar theory is that to solve
the Wiener-Hop! equation it suffices to find the solution g(t.a,8) to a Riccati-

type partial differential equation

1
ot ) = P ek Qt.ap) + [ @t.afywip)af (25)
1 1
+ { Q(t.oa prua) da + [ { QU .a.f)Q(t.o pw(a)w(f) dadf .

@ can be computed by discretization of this equation to obtain a finite dimen-
sional system of ordinary Ricatti differential equations This has great computa-
tional advantages, though since it may be required to compute @(t.a.8) for ¢, a

and B ranging over a large set of values, this is still burdensome.

However using certain physical invariance arguments, Ambartzumian
(1943) was able to show that & could actually be computed in terms of two func-
tions X{t.y) and ¥{t.y). of two rather than three variables. Then Chan-
drasekhar (:947) derived a pair of differential equations for X and Y, consider-

ably simpler than the original Riccati equation {25)

1
PED = it [ vie prue) dp (26a)
1
OVLN) - - yiey) - xit ) [ vieBrw(B) dB (26b)
i (
with
X(0y)=Y0y)=:. 0<sy<

——




" i

322 T. KAILATH
Astrophysicists were quick to recognize the value of the recursive solution of the
equations (26) (see, e.g., Sobolev (1965), p. 79). The ideas of Ambartzumian and
Chandrasekhar were brought to the attention of applied mathematicians by the
extensive work of Bellman, Kalaba and their colleagues on what they called
tnvariant imbedding (see, e.g., Bellman and Wing (1975)). The equations (26)
were first introduced into the estimation literature by Casti, Kalaba and Murthy

(1972). Their extension to nonstationary processes was made bv Kailath (1973).

2¢. Sobolev's Identity and The Krein-levinson Equations

Fundamental work on the finite interval, stationary case did not end with
Ambartzumian and Chandrasekhar. In particular Sobolev (1965) went on to
address the problem of arbitrary K(t—s), for which a representation such as
(R3) is not given, and he succeeded in developing a much more direct approach
His idea was to exploit the Toeplitz structure of K(t.s)=K(t—s) more deeply
than in the previous theory. By this approach, he established a very powerful
constraint on the Fredholm resolvent (smoothing kernel) H(t,s:T) of a Toeplitz

kernel:

If A(T:t) is defined via the equation
T
ATit) + [ A(Tu)K(u ~t)du = K(T -t), 0t <T (27)
[+]
and B(T.t) via
T
B(Tit) + [ B(Tu)K(u - t)du = K(-t), 0<t<T (28)
0
then Sobolev showed that

[ 2. %]il(t.s;'r) = A(T.A(T:s) = B(T:)B(T:s) (29)

with
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A(T:t)= H(Tt;T)y= H(,T:T) (30a)
and
B(T:t) = H{0.t;T) = H(t,0.,T) . (30b)

(Note that these equations are written for the general case of matrices K, H, A
and B.) Sobolev's identity shows that the resolvent H(s.t;T) is determined for
(¢.s)<[0.7]x{0.T] by its values on the boundaries of [0,7]x[0,T] ie. by two

functions of one variable.

Sobolev's identity is even more striking in its integrated form, which, when

translated into operator form, is
I-H=(-a")}/-a)-b" (31)

where @ and b are not only causal, but also Toeplitz. This means, for exam-
ple, that the filter determind by a,
t
(ay): ={a(t = s)y, ds

is time-invariant. Eqnation (31) is a useful modification of the formula (15a):
(I-H)=(I-A")(I~h). because it expresses H only in terms of time invariant
(causal and anticausal) operators, whereas h, even for Toeplitz K, is not gen-
erally time invariant Since time invariant filters are much easier to implement
than time-variant ones, it is reasonable to use a instead of h, whenever h
appears. Of course, an error is then incurred, but the remarkable implication of
(31) is that if a replaces h in {15a), the correction can again be made with a

time invariant fiiter &. Explicit formulas for a and & are as follows.

a(t) = A(T:t) (32a)

b(t) = B(T.T —t) . (32b)
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For more on the applications of this identity to smoothing and other prob-
lems, see Lévy et al. (1979) and Kailath et al. (1978)

Sobolev’s identity also has important implications for fast computation of
the resolvent kernel H(f{,s;T) because we need only develop an eflicient,
recursive method for updating the boundary values A(T:.t) and B(Tt) of
H(t.s.T). In fact, Krein (1955) had obtained such equations, which we shall

present here in the special case of scalar processes:
L v 2 A(Tis) = - A(T.T —s)A(T0) . (36)
at  Bs ' ' '

To see what this means, consider the naive discretization, 7=N A and
A(T + AiA + A) = A(T3A) — A(T:T —iA)A(T.0)A (36)

which propagates as illustrated in the figure

S4

R D

T
AlT;-)3 NA(T+a; ")
H
——>
0 T T+4

The one point not picked up by this scheme is A(T+A,0) and so it i1s com-
puted by using the integral equation (27):

T+
AT 00)= [ AT + bu)K(u) du + K(T + ) (37)
0

o S AT + 810)KGA)A+ K(T + ) .
=1
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How fast is this algorithm? If T=N-A, it takes N+1 multiplications to go from
T to T+A Therefore, to generate the boundary out to 7T, takes
142+ .+ N=N(N+1)/2=0(N?) multiplications. Without the Toeplitz structure,

we would need O(N%) operations to compute H(t,s;T).

The above method of solving (36) via discretizat.on leads to recursions very
similar to those introduced for the prediction of discrete-time processes by
Levinson (1947) and since then widely studied in the signal processing literature.
We therefore call (36) a Krein-Levinson equation. Kailath, Ljung and Morf (1978)

have extended these techniques to nonstationary processes.

We should also mention that when a representation of Kk(t-s) in the
exponential form (23) is available, the Krein-Levinson equations can in fact be
reduced to the Ambartzumian-Chandrasekhar equations (cf. Kailath, Ljung, Morf

(19786)).
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3. Some Examples — Nonstationary Processes

3a. State Space Process Models - Kalman-Bucy Filters

The most common approach to nonstationary process estimation is via
state-space models. It is assumed that the signal process z; can be described

as

zt = Hzy (38a)

= Foxy + Guy , t2tg (38b)

where z; is an nx1 "state” vector, 2, is a pxl vector and u is an mx1

"white noise" vector. The observed process is
Y =2ty {38c)

where is the observation noise v; such that?

z{[::] [u;v.'ll = [C’; ?] 5(t ~s) . (384)

The initial state Zyy 18 assumed to be random, with
E 1[0 =0, F z‘oz[o = ﬂo ' (389)
and furthermore, it is also assumed that
Ewz =0, Evzy =0 forall t>tp . (38f)
Finally, the matrices F;,G H;.Tlg are all assumed to be known. The above
assumptions ensure that
Eviz,=0il s<t
They also ensure that z; is a Markov process, so that the signal 2z; is modeled

In the literature it is common to assume K WUy =@ 6(t —s) and F vus =K 6(t —s).
Ky >0, but without loss of generality we can make the convenient normalizations of (38d)
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as a so-called projection of the Markov state process z;. Such descriptions had
been widely used by physicists (see, eg., the papers in Wax {1954)) and
mathematicians (see, e.g., Doob (1944), (1948)) for stationary processes with
rational power spectral densities. The extension to models with time-variant
coeflicients, as in (38) above, is at least in retrospect fairly natural and it began
to be made in estimation theory in the late fifties by Laning and Battin {1958, p.
304). Stratonovich (1959), (1960), and most notably by Kalman (1960) and Kal-

man and Bucy (1961)

The celebrated Kalman-Bucy fiiter for the model (38) is

2, = Hiz, t>t, (39a)
£ =Rz + Ko (39b)
zy,=0 (39¢)

Here vy 1s the "innovation process”,
ve =% ~ Hizy . (39d)
which is known to be white with
E v, =16(t -5) (39e)
The nxp matrix K;, which we shall call the "Kalman gain”, can be computed as
Ko =P+ GG (40a)
where the nxn matrix F; 1s the covariance matrix of the errors,
Po=EZIZ, T, =2 -2,. (40b)

Kalman and Bucy showed that /4 could be recw sively determined as the

unique solution of the nonlinear Riccati-type differential equation

Po=FP B0+ GG - kK. P=1 (40c)

4]
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This is all very well known to estimation theorists by now. It is perhaps not
so widely known that the recognition of the importance of state-space models
and Markov processes in signal estimation problems is due independently to
Stratonovich, who actually studied the nonlinear filtering problem, and, using
"Gaussian approximation” methods, derived what was later called the "extended
Kalman filter”. For the linear case, Stratonovich gave an exact solution which is
exactly the Kalman-Bucy filter. However, no stability analysis was given and no
intensive study of the Riccati equation was made; these were the vital contribu-

tions of Kalman and Bucy.

It is often said that the reason for the wide applicability of the Kalman-Bucy
filter (in particular, to general time-variant models) is that giving a state-space
model avoids the difficult problem of “spectral factorization”. This is totally
wrong! Canonical spectral, or in the nonstationary case "covariance”, factoriza-
tion, results in a model that is not only causal but also causally invertible. This
is clearly not the case for the assumed model (38): knowledge of y={y,, to<s<t}

does mot allow us to reconstruct u,v and Zsy Therefore to find the filter,
canonical factorization still has to be done in one way or another.

In fact, as we noted in Section 2c (cf. (14)), knowledge of the canonical
spectral factor should immediately determine the filter and vice versa. Here we
have the filter and could ask how to obtain the canonical factor. The answer is

simple: just rewrite {39) in the form
Ty =Pz, + Ky (41)
Y= HiZg+u, 24y=0 .

We see that (41) describes a causal and causally invertible relation between a

white noise input v and the desired process ¥. We call it the innovations

representation (IR) of y Thus the above equations determine the true
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canonical factor. But to find this factor, we have to do quite a bit of work, viz.,
solve the Riccati equation. In other words, assuming a state-space model does
not in any sense allow us to avoid determining the canonical filter (unless, of
course, we start with such a model).

A Remark on Derivations

By now numerous proofs of the Kalman-Bucy equations are available. In the

present context, it may be interesting to note that if
R ¢
Ty = fhz(tns)ys ds
‘o
then h,(t,s) obeys the Wiener-Hopf equation
t
hy(t.s) + [ by (t T)K(.S)dT = K(t.S), to<s <t
(i

where K{t.s) can be readily computed trom the given model (38)--in fact, see
(44) below. Some calculation will then show that

[+]

gt—hw(t-s) =[F(t) = hy(t.t)]hgy(ts). s <t

so that

¢
o5 = L IO = ey DHO Ty (20 5 + Ry (8O
= F(t)z, + hay (8. 6) Yy — H(t)z,],

which will be the Kalman-Bucy equation (39a) when we show that hy, (t.t)=K, as

given by (40). We shall omit these calculations.

3b. State Space Covariance Models - Recursive Wiener Filters

While many diflerent models §{F;,G.H;. @ &.Tlp} can yield the same covari-

ance function

R(t.s) =1 6(t -s)+K(t.s).
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the impulse response of the canonical factor is known to be uniquely determined
by R(t,s). Therefore one would expect that it is possible to compute the Kal-
man gain K; (which should not be confused with the term K(¢,s) in the covari-
ance funtion) directly trom the parameters of the covariance function R{t.s).
This can in fact be done (Kailath and Geesey, 1971). as can be seen by examining
the special form of the covariance function associated with a state-space mode!

of the form (38).

. Let ®(f.s) be the state transition matrix, which is the unique solution of

the linear differential equation

2ULS) = paes); d(sis) =1

Let 11, be the mxn covariance matrix of z;,
e = E zyx; . (42)
It is easy to check that [I; is the solution to the Lyapunov-type equation
hg = R, + L F + GG . (43)
with given initial value [l;. By direct calculation we have

| I-6(t —s)+ H(t,s)N, if t=s
' RUSI=) 5t —s)+ NO(s.)H, if t <5 (44)

i ; where
N =Tl + GG . (45)
We will now assume that (only) H;, F; and N; are known. Define
= B zez; . (46)

I we recall that P, =F 5}5", where ;,zz:‘ —2?,, then the orthogonality of f‘

and z, immediately yields the 1dentity

n‘ = P‘ + Sg (47)
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Therefore we can now rewrite the Kalman gain {cf. (39f)) as
K= PH +GC =TLkH + GC, - L Hy = Ny — S Hy (48)
Moreover, note that
By =0 =Py = RE 4 R+ KK 5= 0 (49)

The equations, (48) and (49), determine K; completely in terms of the parame-

ters {H, . F,; ,N;} of the covariance function R(¢.s).

We note that we have effectively also obtained a recursive form of the solu-
tion to the Wiener-Hopf integral equation {8) for estimating the signal 2, from
¥ . provided the covariance function R(t,s) is given in the (factored) form (44).
This provides a nice answer to the efforts of several investigators in the mid-
1950's attacking Wiener-Hopf equations with nonstationary kernels (sce, eg.,
Dolph and Woodbury (1952), Shinbrot (1956), Zadeh and Miller (1956), Laning and
Battin (1958)) We may thus call our solution (39), (48)-(49) a recursive Wiener

filter as compared to the Kaiman-Bucy fliter (39)-(40)

The close connection we noted in Sec. 1c between the solution of the filter-
ing problem and of the canonical factorization problem means that the above
results, especially (41) and (48)-(49), also give us an expression of the canonical
factor {innovations representation) directly in terms of the parameters of the
covariance function. The notation z for the state of the model (40) is, of
course, just a reflection of the original noncanonical model (38) that we started
with, = has no particular significance if we are only given a process y with
covariance R=/+K, and therecfore it is preferable to rewrite {40) in a different
notation Following Faurre {1969), we shall write the canonical innovalions
mode! as

Zq = Fizq + Kqvy . 2o =0 (50a)
Yo = Hiza + va (60b)
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where
Ke =Ny —ZoHy (50c)
and Z. obeys the Riccati equation
Y =FiZq +ZaFi+ KaKqg ., Lig=0 . (504)

The value of our particular derivation of the IR is that it shows that of all
(causal) models of a given covariance triple {F; H;,N;}. this one has the "smal-
lest” state variance matrix. because its state, z4, is the projection (on the

space spanned by {y;. s<t}) of the state, z,;. of any other model.

There has been sorne interest 1n studying the set of all causal models asso-
ciated with a given covariance triple; in particular, one might ask by analogy
with the above for a marimum-variance causal model. It turns out that this
model can be defined via a certain smoothing problem, rather than a filtering
problem as for the minimum-variance mode:. We refer to Kailath and Ljung
(1981) for a discussion of ttus result, and its implications for the so-called sto-
chastic realization problem of studying all causal models of a given process.
There have been a number of recenl papers on this, see especially, the book of
Clerget, Faurre, Germain (1978), the thesis of Ruckebusch (1979), and Lindquist

and Piccl (1981), which contains references to several of their earlier works.

3c. Orthogonal Decomposition of the Space of Random Variables

Here we shall continue instead with another aspect of the interplay between
smoothing and filtering theory, as brought out by a recent result of Weinert and
Desai (1980), which we can formulate as foliows.

Given the state-space model (38), it is easy to see that we cannot recover

the "input” random variables fusvg.z;{ just from knowledge of the "output”

random variables {y,{. unless we have additional information The nice observa-
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tion of Weinert and Desai is that this additional information can be provided by a

model ‘adjoint’ to {3B) in a certain sense. In particular, define {7,.8{ by the

equations
Xe == Fixe — Hve o xe, =0 (51a)
M ==Gx +v (51b)
and
8 = —Tlox;, + = (51¢)

Then we can check by direct calculation that
E@y =0, E xy: = 0 (52)
and that the sets
tuevezy} and fye.n:.0 (63)

can each be recovered from the other by causal hnear operations In fact, this

latter equivalence can be seen by first combining the equations (38) and {5!)

i

into the set

o [, o )b,
= 0‘ —/‘}'] [‘;“} + lO’ —H [v: (54a)

ARER| AT =
Then, by elimination, we can write
H 1 r —aallk], an ] (55a)
Xt —HeHy =k L\f ~Hy e
with the "two-point” boundary value conditions
Xt, = 0, T, ”oX:, =0 (55b)

Given {0,y;.m,{. we can solve this linear two-point boundary value problem for

fz;.x¢} and then calculate fug v, 2(0)] from (51b,c¢).

P
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We can summarize the above discussion by saying that the result of Weinert
and Desai shows that the linear space of random variables spanned by {u;.v; .z}
can, at each ¢, be orthogonally decomposed into the space spanned by f{y
and {n,.8}.

[The following rermarks might help explain the origin of the above equalions
The point is that given {y,. Lgst<t,{ we cannot reconstruct fu; v .z but at
best only their smoothed estimates !ﬂ,,‘ff,,fo}. For a full reconstruction we
must augment {y,} by the errors {iL;.v,.Z o). Now some simple calculation,
which is facilitated and in fact illuminated by the use of operator notation. will
show that the §7,.8] as defined above span the same space as the {2 .0;.Z of
Hence ... }

Of the several interesting implications of the above results, we shall here

focus on just one.

3d. The Hamiltonian Equations and a Scattering Framework
for Estimation Theory

Consider the projection of the random variables in the equations (55) onto
the space spanned by {y:, te<t<t,{
Now, if we define

Agie, = )?m, (586)

and note that the orthogonality properties {52) imply that ;]g“ff 0 and 6,,,:-0.

the equations (55) reduce to

;‘“J 1R -GG| lo
”.Nlt, - [Hg'Hg Fy ]+ [H,] Y (57a)

with boundary conditions

Apie, =0 £t°|l! = TloAegie, (57b)

ke i i e e i n s s
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These are the so-called Hamiltonian equations for linear estimation They
were first obtained by Bryson and Frazier (1963) in exploring a calculus of varia-
tions approach (maximizing a 'likelihood' function) to least-squares estimation.
Verghese, Friedlander and Kailath (1980) used them to develop a so-called
scattering theory approach to linear estimation. To introduce this, we shall for
convenience change notation in (57):

to»T, t s, ty »t

Then using Euler discretization, e g.,

qut = [Agaals —Aejt]/7 8+ a(h)

and the approximcation

FEY

fyudt’:ysA"’o(A)-
3

we can obtain the following discrete approximation to (57):
Zyuaie| [ 1+FD GGAl (2o | ] 0 (58)
At ~HyHy 8 T+F A Pseale lH,y,A
where we have, and shall in the future, consistently omit all o(A) terms. Note
the arguments of the A, which are reversed from those of f.“. Because of
this, we can depict (58) graphically as in Fig. 1, which suggests that we can
regard z{ !t) as a forward wave and A(|t) as a backward wave travelling

through an incremental section at s of some scattering medium specified by

the quantities
I + F, A = the incremental forward transmission coefficient
I + F,A = the incremental backward transmission coefficient

-H,H,A = the incremental left reflection coefficient

G, G,A = the incremental right reflection caefficient




T. KAILATH

H,y,8 = the incremental internal backward source excitation.

Z]

A(s]t) I+F'a : A(s+4|t)
‘
|
+

S

Figure 1. An incremental scattering layer corresponding to Eq. (58).

x(z]t) 2 (t,7) x(t]t)

Figure 2. A macroscopic scattering section
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We can put together such incremental sections to get a macroscopic sec-
tion of the scattering medium from say s=7 to s=t. This is shown in Fig. 2,

where, for reasons that will be clear very soon, we have denoted
$o(t.7) = the forward transmission operator
®4(t,7) = the backward transmission operator
Py(t,7) = the right reflection operator
O¢(t.7) = the left reflection operator
qd (¢,7) = the forward internal source (i.e., y(.)) contribution

g¢ (t.7) = the backward internal source contribution

The reasons for this notation can be seen by considering the effect of adding an
incremental section from ¢ to f+A, as shown in Fig. 3. By tracing paths

through the figure, we can write

ot + ATY = (I + FAY®o(t.7) ~ (I +FA)PoH HAd(t 7)
+ (I + FO)PoH HPoH HA&(t,7) — - -
= (] +FA)(J — PoH'HA + 0 (8)%o(t.7) (59)

where o(A) denotes terms that go to zero faster than A as A-+0. Then we see
that

¢°(t + A,t) - Qo(t.T)

um 5 = (F = PoH H)%(t 1) (60)

which identifies $y(t,7) as the state-transition matrix of F—PyH' H.
Similarly, we can see by tracing paths through Figure 3 that
Po(t + A1) = GGA + (I + FAX(Po — PoH HPohA + o (A))(I + F'b) (61)
so that

Pyt + AT) - Pglt.T)
iim

A = GG + FPy + PoF — PoH HP (62)
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which identifies Py(t.7) as the solution of a Riccati differential equation. A
similar calculation will identify Og(t,7) as an observability Gramian of the

matrices {F—PoH H H}

00 I+Fa

O,
]
f
)
]
T

Figure 3. To determine the (forward) evolution equation of Sy(t.7)

ad X X ]
ot o o= o o=ti)

We shall collect these operators in a so-called scattering matriz
= | ®olt. ) Po(t.7)
Solt.7) = ‘-oo(z ) 8olt. ™) (63)

and our previous calculations show that

(64a)

3 (F—=PoH H)bo FPytPoF + GG —PoH HP,
ar Solt T = :

®oH Hg $o(F-PoH'H)
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with initial conditions
so(rr) = [} 9 (64b)

These initial conditions help to explain the subscript ‘0’ on Lhe various quant-
ties above, and we can get some more insight into this by going back to the
boundary conditions of the original Hamiltonian equations and trying to incor-
porate them into our scattering picture. The A;;; =0 condition means we have

no backwards incoming wave, while the condition

Zye = Tlghr
can be incorporated, as shown in Fig. 4, by adding a 'boundary’ layer to the left
of the section Sg(t.7) of Fig. 2.

One immediate result from this figure is that we can i1dentify {gd .q5 | as

the emerging waves from the medium when [1;=0. We shall denote these as

o (£.7) = Ag(T1t) . gg (t.7) = Zo(t |t) (65)
e I x(t{t) 2 x(t]t)
L/ o v, - 0
q+
boundary i -0 0 p
layer 0 So(tar) 0
-
0
Zl () /]
I Ar]t) % A(t]t)=0

Figure 4. Incorporating the boundary conditions.
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We shall now show how to derive forward differential equations for Ay and

Zo and also backward equations as in {i7)-(18). For forward equations, we start

by adding an incremental section to the one in Fig. 4 (but with [1=0=z;). Doing

this gives the result shown in Fig. 5b.

Combining the signals in the two parts of Fig. 5a we obtain for the quantities

in the combined section of Fig. 5b, tae relations
Aot |2 + A) = Ag(T{t) + SoH (y — HTo(t |t + A)A + o (A)
so that

—-——%g“) = St T)H(E)(y(t) — H(t)zo(t |t)) (66)

So also, we can read off the relations

Zo(t + Blt +8) = ([ + FAYZ {t|t + A)
Zo(t |t +A) = zo(t |t) + PoH(y — HZo(t |t + A)) + o(4)

so that

Zo(t 1) = F Zo(t |£) + PoH (y{t) — H(£)Zo(t |£)) (67)

which can immediately be recognized as the Kalman-Bucy equation, thus
explaining the notation in (65). What we wished to illustrate here is that the
state-space filtering equations can be derived from the (scattering framework
based on the) Hamiltononian equations for the smoothed estimates which, of

course, is the opposite of the usual order.

There are many other illuminating consequences of the scattering picture,
which not only helps to organize in a very efficient way many of the special
results and identities associated with state-space estimation, and has led to new
results on backwards Markovian models, smoothing formulas, asymptotic pro-

perties, fast algorithms, decentralized estimation, etc. However, we shall
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content ourselves here with mention of the papers Kailath (1975), Ljung. Kailath
and Friedlander (1976), Friedlander, Kailath and Ljung (1976), Verghese, Fried-
lander and Kailath (1980), L&vy {1981).

0 ¢ xo(t]t) *Fa

(a) Adding an incremental layer

(t]t+a) x(t+5]t+:)

0 ‘ Xq

(b) The combined section showing the resulting
signals at different points
Figure 5. Determining the forward evolution
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3e. Nonstationary Processes Studied as Processes Close Lo Stationary

In studying the Ambartzumian-Chandrasekhar equalions of Sec 2b and
especially their extension to nonstationary processes generated by constant
coeflicient state-space models (Kailath (1973)) in a scattering framework,
Kailath and Ljung (1975) noticed that the Sobolev and Krein-levinson equations
of Sec. 2¢ could be extended to nonstationary processes by using the concept of
an index of nonstationarity of a kernel or process. We shall briefly outline the

main idea here.

We first define a so-called displacement operator _! by
= — (68)

and we note that f K(¢,s) = K(t-s) {(and is differentiable), then
—|K=0

For a non-stationary process we may have

_IK(ts) = 8 althpils) . & < = (69)

for some smallest a. and a family of functions §g;(t)}. [For simplicity, we have

assumed p=1, i.e, scalar processes and scalar kernels.]

Example 1.

For the Wiener process K({t .)=min(t.s) and a=1

Example 2.

For a state-space model (38) with constant parameters, it can be shown

that a<n, the dimension of the state space.
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Example 3.

For a composition of kernels
T
(K KQ)(t s) = { Kyt ) Kplu s )du

we obtain the rule
—(K\Kg) = (| K1) Kz + Ki(_| Ky + K 60Kz — K\67 K2 (70)

where

T
K6, Kz .={ K(tw)o(u —g)Ka(u.s) du = K,(t.g)Ko{g.s) .

The composition rule gives us an easy derivation ol the Sobolev identity. For
this, we apply the displacement operator to the equation H+HK=K and use the

rule (70) to obtain, after some rearrangement, the result
(—IHYI + K) = (I = H)-1K + H(67 - b0)K
Noting that (/+K) '=/-H and K(/+K) '=H we then obtain
~NH = (] ~JH)_|K)! - H) + H(6y - Sp)H . (71)
In the stationary case _|K=0 and we have
—|H = HérH ~ HbgH
or written out
—IH(t.s:T) = H(t T TYH(T.8:T) - H(¢.0.T)H(0.5:T) . (72)
which is just the Sobolev identity (29) of Sec. 2c.

The interesting fact is that this identity can be extended to nonstationary
processes by using a slight modification of the representation {69) let us

rewrite (69) in the form

1K = K(.0)K(0.5) + 3 N d(8)a(s) = Kb + DiAD, . say (73)
i=)




:
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Substituting into {(71) we will have
_|H = (I = HY(K6oK + D{AD)(I — H) + HSpH — H6oH

= HégH + (I — HYDAD, (I ~ H) + H67H — HbcH
= HérH + GAG . say (74)

where C:=D(/—H), or equivalently, C satisfies the integral equation
Cl+K)=p

Note that C will be a 1xa vector of functions, with a=1 in the stationary case.
Thus « can serve as a measure of nonstationarity of the process, and {74) 1s the
corresponding Sobolev identity for nonstationary processes. By simple further
calculations we can also obtain generalized versions of the Krein-levinson equa-

tions of Sec. 2c.

We refer to Kailath, Ljung, Morf (1978), (1978) for discussions of the compu-
tational aspects of these equations and of the role of the parameter a We
regret that reasons of space and time do not permit us to describe here resuits
on some efficient, so-called ladder-form, implementations of these equations.
These results allow us to carry over to processes without (finite-dimensional)
state-space models, the basic computational advantages of the state-space
assumption. These were briefly mentioned in the conference lectures; for more

details we refer to the theses of D. T. L. Lee (1980) and H. Lev-Ari (1981).

4. A Concluding Remark

In the nonlinear filtering problem, the state-space assumplion has by no
means been as useful as in the linear case, since it leads to difficull nonlinear
stochastic partial differential equations. It may be that return to an input-
output formulation, perhaps based on the Wiener-Volterra reprsentation, can be
combined with analysis along the lines of Sccs. 2¢ and 3¢ Lo make some compu-

tational progress in the nonlinear filtering problem.
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